BCC Pixel Chooser

Nested Subgroup

Overview

The BCC PixelChooser is an integrated matte and masking system, fully re-engineered in BCC10 to include mocha planar tracking and more robust and intuitive masking/matting tools and provides numerous techniques for selecting which areas of an image will be affected by a filter.

The PixelChooser appears at the bottom of most filters in BCC and effectively creates a matte/mask between filtered and unfiltered pixels allowing far greater control over the design process. The matte/mask can be defined in numerous ways:

• mocha planar spline tracking
• host spline import (in Adobe After Effects)
• basic geometric shapes/gradients
• luma/alpha/channel mattes with thresholding
• robust color keying

Note: The PixelChooser is also available as a standalone filter in the Key & Blend category.

There are 3 main sections in the PixelChooser, which are Matte, Mask and mocha and each of these sections can be combined or used separately to isolate a filter effect to a user specified portion of the image. The PixelChooser can accept an alternate source input as the matte source or it can use pixels from the same source clip to which the filter has been applied.

Matte – this feature is used to generate a raster pixel matte based on pixels from a specific channel of the input source clip. There are tools in the PixelChooser for altering the pixels of the selected channel to fine tune the matte, such as a levels control which clips pixels on either end of the scale. The Matte section also includes a two step keyer, which can be used to isolate particular portions of the input source based on user defined color components, such as skin-tones or a graduated sky.  The Matte group includes an advanced edge-preserving blur option to enable smoother matte generation without loss of important image details.

Mask – this feature is used to generate a single vector based mask and includes many pre-built geometric shapes, such as a rectangle or circle, all of which can be scaled and repositioned in the frame. Edges of the selected shape can be feathered to generate a soft blend mask shape. There are also graduated mask shapes, such as a linear or circular gradient.

Mocha – this feature is used to generate vector spline mask shapes which can be tracked to lock a mask shape to the movement of a camera or a moving object in the scene. Unlike the Matte and Mask features, which use host native controls, mocha has a custom user interface which is launched when the mocha button in the PixelChooser is clicked. Once the mask data is generated, the user clicks a button to close the mocha custom UI and is returned to the host interface.

Included in the PixelChooser is a load/save mechanism that allows you to save a matte/mask and recall it later for use in another project. The saved mask/mattes are filter agnostic, meaning that a mask/matte can be created in one BCC filter, then once it has been saved it can be used in any other BCC filter. Note that the mocha mask data is not saved with the PixelChooser load/save mechanism so instead, save the mocha project to the desktop and load it via the merge option inside of the mocha ui.

For more information about working with presets and other common controls, Click Here.

Legacy PixelChooser

In order to ensure compatibility with older projects the older Legacy PixelChooser is still preserved where necessary.  Click here for documentation on the Legacy PixelChooser

 

Parameter Controls

• PixelChooser pop-up :

This pop-up is how we enable the PixelChooser and is always the first step in the process of using the PixelChooser to generate a mask/matte. There are four options :

– Off : The PixelChooser is disabled
– On : The PixelChooser is enabled and ready for use
– Mask Unchosen Pixels : Displays the mask/matte in a red transparent overlay
– View Matte Source : Displays the source image for the PixelChooser

• View Mask/Matte checkbox :

Enables a grayscale preview of the combined PixelChooser mask/matte.

• Launch mocha button:

Clicking this button will enable the PixelChooser and launch the mocha custom user interface.  A quick introduction to using mocha within BCC is included in Example 2, further below on this page.  For more in-depth help on using mocha, launch the mocha help documentation from within the mocha custom UI.  A wealth of additional mocha training is also available on the BorisFX website.

• Apply PixelChooser pop-up options :

Some BCC filters include an “Apply PixelChooser” option which controls how the PixelChooser data is used.  This option is used to instruct the filter where in the processing pipeline the mask/matte is to be applied. There are typically up to 4 options : Post Effect, Pre Effect, Both, and Spread Selected Pixels.

– Post Effect : the mask is unaffected by the filter. the order of operations is : (1) the filter is applied to the image (2) the filtered result is blended back with the original source image based on the mask shape

– Pre Effect : the mask is affected by the filter. the order of operations is : (1) the image alpha is clipped by the mask shape (2) the clipped image is filtered (3) the masked, filtered image from step 2 is composited back into the original source

– Both : first the Pre Effect result is created then the Post operation remasks the output by blending it back against the original source image based on the mask values.

– Spread Selected Pixels : works like the Pre Effect, however, the filtered result from the Pre Effect stage is masked a second time by the shape to generate alpha (transparency) and the result is composited back into the original source

• Effect-specific PixelChooser Apply options:

A small number of effects support additional customized ways to use the PixelChooser data.  The default PixelChooser behavior is always to mask back the final filtered result against the original source image.  However some filters contain additional options to allow the PixelChooser to be applied to individual stages of the filter as opposed to the final filtered result.  (For example masking only the lighting, bump mapping, or distortion instead of masking the complete effect.)

• Presets group

This group contains the load/save mechanism for storing and recalling factory installed or user generated matte/mask setups. All filters read from the same directory so custom saved matte/mask setups generated in any one BCC filter are accessible in any other BCC filter

Clicking the Save button will prompt the user to specify a name (and directory) for the current PixelChooser settings

Clicking the Load button will prompt the user to select a factory installed or user generated preset

Clicking on the pop-up bar will display a list of available presets. Clicking on any name in the pop-up window that appears will load that preset

Clicking on the up/down arrows will load consecutive presets from the default directory. The name of the currently selected preset is loaded into the pop-up bar

————————————————————————————————

• Mask Group

This group contains parameters to create and control the PixelChooser geometric mask shapes

• PC Mask Intensity : use to alter the intensity of the mask

• Shape pop-up options :

– Off
– Shape – Mocha Spline
– Shape – Egg
– Shape – Oval
– Shape – Circle
– Shape – Rectangle
– Gradient – Circle
– Gradient – Rectangle
– Gradient- Linear
– Gradient – Linear Double Edge
– Clock Wipe
– AE Host Mask (After Effects Only)

• Feather : Use to soften or feather the edges of the mask shape

• Invert Mask checkbox : inverts the mask when enabled

• Use AE Host Mask : provides options for using Adobe After Effects native host mask shapes

– Use All : uses all mask shapes in the selected PixelChooser layer
– Choose Single : allows the user to select a single AE native mask shape.  When this option is selected, the Select Host Mask pop-up become active and displays a list of the current AE native host mask shapes that are present in the selected PixelChooser layer. Select a single mask shape from the list to use it
– Choose By Name : allows the user to select mask shapes based on their naming convention. When this option is selected, the Name Starts With pop-up becomes active and displays a list from which the user can select.

Options are :
– Anything (selects all masks regardless of the name)
– Letters A through I (only masks beginning with the chosen letter are selected)
– Mask (all masks shapes that are named Mask are selected)

• Host Mask Offset : use to reposition the host mask shape along the x/y axis

• Center : use to reposition the mask shape along the x/y axis

• Master Scale : use to increase or decrease the size of the mask

• Scale X : use to scale the mask along the x axis only

• Scale Y : use to scale the mask along the y axis only

• Gradient Start : use to set the starting point of the gradient shape

• Gradient Distance : use to set the length of the gradient

• Gradation : use to set the ramp of the gradient

• Stretch : use to distort the gradient shape along the x or y axis

• Start Angle : use to set the angle for the start of the clock wipe

• End Angle : use to set the angle for the end of the clock wipe

• Rotation : use to rotate the linear gradient around it’s center

• Egg Balance : use to set the pinch for the egg shape. positive values generate a triangle, negative values generate an upside down triangle.  A zero value generates a perfect circle

• Rotate Around Shape : use to rotate multiple AE native host mask shapes about their individual center points.  When disabled, the masks will rotate around a combined center point of all mask shapes

————————————————————————————————

• Matte Group

This group contains parameters to create and control the PixelChooser pixel based matte shapes

• PC Matte Intensity : use to alter the intensity of the matte

• Channel pop-up : use to select a channel for the PixelChooser source clip for the matte

– None : no pixels from the input source are used
– Luma : only values from the luma channel are used
– Red : only values from the red channel are used
– Green : only values from the green channel are used
– Blue : only values from the blue channel are used
– Alpha : only values from the alpha channel are used
– Key : only pixels that fall into the range set by the color swatches are used

• Matte Layer : use to select a source layer for the matte section of the PixelChooser

• Matte Type : use to select an operator which can modify pixels in the selected channel

– Levels : matte is based on user determined black and white levels
– Threshold : matte is based on a user defined midpoint
– Range : matte is based on user defined start and end points

• Pre Smoothing Amount : advanced edge-aware smoothing of the source prior to any modifiers being used.  Allows generating smoother masks without softening important image detail.

• Preserve Contrast : use in conjunction with the pre smoothing option to preserve contrast in the matte

• Black Level : use to control the shadow areas of the matte when using levels

• White Level : use to control the highlight areas of the matte when using levels

• Threshold : use to set the threshold for the black/white regions of the matte

• Range From : use to set the start point (highlight) for a range based matte

• Range To : use toast the end point (shadow) for a range based matte

• Softness : use to expand or contract a threshold or range based matte

• Color A : use to set color for keyer

• Color B : use to set color for keyer

• Hue Softness : use to expand or contract the hue values used by the keyer

• Saturation Softness : use to expand or contract the saturation values used by the keyer

• Luma Softness : use to expand or contract the luma values used by the keyer

• Clip Black : use to control the shadow region of mattes generated by the keyer

• Clip White : use to control the highlight region of mattes generated by the keyer

• Gamma : use to adjust the gamma of mattes generated by the keyer

• Choke : use to shrink / spread the generated matte

• Blur : use to post-soften or blur the generated matte

• Invert Matte checkbox : inverts the matte when enabled

————————————————————————————————

Usage Examples

————————————————————————————————

Example 1a

Simple Gradient Matte – BCC Fast Film Process – In this example, we’ll describe how to limit the filter effect to just the top of a shot with the linear gradient shape.

• Start by applying the BCC Fast Film Process filter to a source clip
• By default this filter has no effect on the source
• Click on the FX Browser button at the top of the filter to launch the FX Browser User Interface

Image1

• FX Browser UI

Image2

• Select the preset labelled “Color Push”
• Click the Apply button to apply this preset to the source clip and return to the host UI
• Observe the the selected filter effect has been applied over the entire source clip
• Set the PixelChooser pop-up to On

Image3

• Enable the View Mask/Matte option by clicking the checkbox

• Observe that the source image has been replaced with solid white. This is because the mask/matte has not been set up

• Twirl open the PixelChooser group to reveal the Mask and Matte options
• Twirl open the Mask group
• Click on the Shape pop-up to view the Mask options
• Select Gradient – Linear from the list that appears

Image4

• Observe that the image in the viewer is now a horizontal black – white gradient. The area that is black will serve as a hold-back mask for the filter, meaning that these areas will be protected. The area that is white is the pass-through for the mask and this is where the filter will have an effect on the source clip. The gradient will ramp the filter effect from 0 (black) through to 100 (white). Now we’ll adjust the mask.

Image5

• Set the Rotation parameter to a value of minus 90
• Set the Gradient Start to 700 (default is 540), which will shorten the masked area so that more of the upper portion of the clip is affected by the filter
• Set the Gradient Distance parameter to a value of 30 which will smooth the transition between the filtered and non filtered regions in the clip

Image6

• Now that we have the mask set up, let’s disable the View Mask/Matte option by clicking on the checkbox so that we can see the filtered result.

Image7

• Note that at the top of each BCC filter is a group of parameters labelled Compare Mode, which provides the ability to display a side-by-side comparison of the unfiltered and filtered source. This is a very handy way to preview the filtered result against the unfiltered source clip before moving to the next shot.

Image8

 

————————————————————————————————

Example 1b

– Combining a mask shape with a matte – BCC Fast Film Process – In this example, we continue to refine the mask that we created in example 1 by adding a pixel based matte to the gradient mask.

• Enable the View Mask/Matte option so that we can see the mask that we’re creating
• Twirl up the Mask group to hide these controls
• Twirl open the Matte group
• Click on the Channel pop-up to view the channel options
• Select the Blue channel from the list

Image9

• Observe the change in the mask. Now we’re seeing pixels from the image that are included with the mask shape.

Image10

Next we’ll use some of the parameters in the Matte group to refine our selection

• Set the Black Level parameter to 40
• Observe how the dark area of the matte is now clipped
• Set the White Level parameter to 70
• Observe that the White area of the matte has expanded and is cleaner
• Set the Pre Smoothing parameter to 50
• Observe that the matte is now slightly softer as the pixels from the image source are smoothed with an advanced edge-preserving blur before being isolated and fed into the matte result

Image11

• Now let’s disable the View Mask/Matte option by clicking on the checkbox so that we can see the filtered result, which is that we’ve isolated the filter to operate only on the masked out portion of the image but again, we’ll enable the Compare Mode and select the Side-by-Side option to compare the unfiltered source with the filtered result

Image12

• And here’s the final result – a selectively filtered image

Image13

 

————————————————————————————————

Example 2a

Using mocha to mask and track moving objects in a static scene – BCC Witness Protection

So in example 1a and 1b we’ve seen how we can use the PixelChooser to generate a static mask shape and combine that with a moving matte to isolate an area of the source clip on which the filter can operate. In Example 2, we’re going to use the PixelChooser to isolate multiple moving objects in a shot.

The source clip that we’re going to use for this example has two people riding bicycles down a path toward a locked down (static) camera. The object of this exercise is to isolate the faces of the cyclists and blur them.

• Start by applying the BCC Witness Protection filter to the source clip
• In the filter control panel, click on the mocha button which will simultaneously enable the PixelChooser and launch the mocha custom user interface

Image14

• In the mocha UI, drag the time indicator or press the play button to scrub through the clip to familiarize yourself with the motion of the bicyclists in the scene

Image15

• In the toolbar that spans the top of the mocha UI, there is a button that looks like a magnifying glass. Directly to the right of that, there is a button with a pen nib and an X – this is the tool we use to generate X-Spline shapes.

Image16

• Click on the X-Spline button to activate the tool
• Create a shape that covers the face of one of the faces. To close a shape use the right mouse button or press the enter key
• Repeat this procedure to generate a shape for the second face

Image17

• Now that we have basic shapes created they need to be tracked so that they remain locked onto the target as the cyclists move down the path.

• Select the two shapes either in the viewer panel or the layer controls panel

Image18

• Beneath the timeline there is a button in the Track group that looks like a play forward button with the letter T over it. Click this button to track the masks into the shot. Note that on some shots you might need to enable the Perspective option to correct for any drift

Image19

• Once tracking is complete, the movement of the mask shapes should be matched automatically to the movement of the faces in the scene
• In the row of buttons located at the top of the viewer, there is a view matte button that when enabled will display the shapes as semi transparent masks

Image20

• Right next to the view matte button, there is an icon that looks like a paint bucket. Click this button and you can see the faces isolated in the shapes without the background

Image21

• Scrub through the timeline to ensure that tracking is accurate and adjust as necessary. (for more detailed information on using mocha, click on the Help button at the top of the mocha user interface.)
• Note that if you change any shape or point on a shape that mocha will automatically generate a keyframe at that point in the timeline and will automatically “tween” the shape between the keyframes
• Click on the save button at the top left of the mocha ui (this is the icon that looks like a disc with a down arrow. you can also use file>save project with the same result)
• Close the mocha UI window to return to the host timeline

Image22

• In the filter control panel, click on the the View Mask/Matte checkbox option to review the mask shapes. The mask shapes have hard edges so we’ll feather them
Image23

• Twirl open the Mask group
• Set the Feather parameter to a value of 12

Image24

• Disable the View Mask/Matte option
• Scrub through the timeline to review the result

Image25

• Should you need to generate additional mask shapes, or alter one of the shapes you created, click again on the mocha button in the effects control panel to reopen the mocha user interface

 

————————————————————————————————

Example 2b

Using mocha to mask and track static objects in a moving scene – BCC Witness Protection

In Example 2a we learned how to use mocha to generate and track multiple mask shapes to obscure moving objects in a scene which was shot with a locked down tripod mounted camera. In this example, we’ll learn how to use mocha to mask and track multiple objects on static elements in a scene that was shot with a hand held camera.

The source clip that we’re using for this exercise is of a parked car that was shot with a hand-held camera as it is walked through the scene. The object of this exercise is to obscure the license plate, make and model of the car in the scene.

• Start by applying the BCC Witness Protection filter to the source clip

Image26

• In the filter control panel, click on the mocha button which will simultaneously enable the PixelChooser and launch the mocha custom user interface

• In the toolbar that spans the top of the mocha UI, there is a button that looks like a magnifying glass. Directly to the right of that, there is a button with a pen nib and an X – this is the tool we use to generate X-Spline shapes.
• Click on the X-Spline button to activate the tool
• Create a shape that covers the license plate on the rear of the car

Image27

• Enable the Perspective option to help the tracker maintain a lock on the car as the camera perspective changes over time
• Click on the track forward button to track the mask into the shot
• Should tracking fail to lock the shape onto the target, please consult the mocha help manual for tracking tips by clicking on the Help button at the top of the mocha UI panel

Image28

• Once tracking has successfully completed, rename the shape layer to “license plate” by clicking on the layer name in the layer controls panel. We’re going to use the tracker data from this shape to drive the position of two additional shapes so that we can obscure the make and model of the car. We can reuse the tracker data for any shape that we wish to position on the same plane as the license plate

Image29

• Use the X Spline tool to create to separate shapes, one each to cover the make and model of the car
• Select one of the newly created shapes to make it the current active selection
• In the Layer Properties panel, click on the Link to track pop-up and select the shape that you already tracked. Repeat this procedure for the second shape
• Scrub through the timeline to ensure that the shapes are now all tracked as expected

Image30

• Save the project and close the mocha UI to return to the host UI

Image31

• Now in the filter control panel, you can adjust the effect which is being applied to the image through the mask shapes that you created in mocha. The default is a user adjustable blur but you can elect to use one of the other effect options, such as mosaic, bright-contrast or tint. To customize the effect, twirl open the Effect group and adjust the controls as needed to product the desired result

Image32

 

————————————————————————————————

Example 3

Generating a combined two stage key matte and tracked mask – BCC Beauty Studio

In this example, we’ll use a combination of the PixelChooser matte and masking system to instruct the Beauty Studio filter to operate only on the skin tone of the subject that we’re working with

The source clip that we’re using for this exercise is a close up shot of a woman’s face.

Image33

We’re going to smooth her skin while maintaining detail in the eyes, hair and lips of the original image. Her skintone will be mostly isolated with the key matte but her lips will need a tracked mocha mask to protect them from the smoothing pass as the color of her lips is not different enough from the color of her skin for the keyer to isolate with the matte.

• Start by applying the BCC Beauty Studio filter to the source clip
• Notice that the entire image is affected immediately by the filter. Everything is a little smoother

Image34

• Twirl open the PixelChooser and then the Matte group to access the keying controls
• Use the Color A and Color B chips to select a range of light and dark color skin

Image35

• Enable the View Mask/Matte checkbox so that we can preview the result while we refine the matte

Image36

• Adjust the Hue, Saturation, Luma Softness parameter values to isolate as much of the skin as possible

Image37

• Further refinement of the matte is done by adjusting the Clip White and Black parameter values

Image38

• To complete the matte generation, set the Pre Smoothing Amount to 30

Image39

• Now that the Matte is generated we’ll isolate the lips using a tracked mocha mask
• Click the Launch Mocha button to open the mocha user interface

Image40

• Click on the X-Spline tool and create a mask shape that surrounds the lips

Image41

• Click on the Track Forward button to instruct mocha to track the mask shape

Image42

• Make any adjustments to the mask that are needed to compensate for drift
• Sometimes it helps to enable the view mask option in the mocha UI to see the shape filled with a semi-transparent color

Image43

• Close the mocha UI to return to the host timeline
• Observe that the mask is showing the lips – this is the opposite of what we need

Image44

• Twirl open the Mask group
• Click on the Invert Mask button – now the mask looks correct

Image45

• The edge of the lips are too hard and need to be feathered
• Set the Feather parameter value to 15

Image46

• Disable the View Mask/Matte checkbox to see the filtered result
• Now you can tweak the main parameters in the filter to achieve the desired result.

Image47


Category:

BCC Particles

BCC Color & Tone

BCC Perspective

BCC Perspective

BCC Licensing

BCC Obsolete

BCC Key & Blend

BCC Obsolete

Nested Subgroup

BCC Art Looks

BCC Licensing

BCC Time

Nested Subgroup

BCC Image Restoration

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Obsolete

BCC Textures

BCC Color & Tone

BCC Image Restoration

BCC Warp

BCC Art Looks

BCC Transitions

BCC Art Looks

BCC Art Looks

BCC Stylize

BCC Textures

BCC Art Looks

BCC Transitions

BCC Key & Blend

BCC Key & Blend

BCC Textures

BCC Textures

BCC Color & Tone

BCC Stylize

BCC Color & Tone

BCC Color & Tone

BCC Obsolete

BCC Color & Tone

BCC Stylize

BCC Transitions

BCC Particles

Uncategorized

Uncategorized

Nested Subgroup

BCC Key & Blend

BCC Key & Blend

BCC Transitions

BCC Match Move

BCC Match Move

BCC Color & Tone

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Perspective

BCC Warp

BCC Transitions

BCC Perspective

BCC Stylize

BCC Transitions

BCC Obsolete

BCC Film Style

BCC Obsolete

BCC Blur & Sharpen

BCC Warp

BCC Stylize

BCC Image Restoration

BCC Image Restoration

BCC Image Restoration

BCC Perspective

BCC Perspective

BCC Key & Blend

BCC Stylize

BCC Lights

Uncategorized

BCC Stylize

BCC 3D Objects

BCC 3D Objects

BCC 3D Objects

BCC Film Style

BCC Transitions

BCC Film Style

BCC Perspective

BCC Blur & Sharpen

BCC Film Style

BCC Obsolete

BCC Obsolete

BCC Film Style

BCC Obsolete

BCC Obsolete

BCC Image Restoration

BCC Transitions

BCC Textures

BCC Browser

BCC Blur & Sharpen

BCC Lights

BCC Lights

BCC Lights

BCC Stylize

BCC Obsolete

Nested Subgroup

BCC Textures

BCC Transitions

BCC Stylize

BCC Art Looks

BCC Color & Tone

BCC Color & Tone

BCC Time

BCC Time

BCC Transitions

BCC Lights

BCC 3D Objects

BCC Stylize

BCC Obsolete

BCC Transitions

BCC Image Restoration

BCC Transitions

BCC Lights

BCC Obsolete

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Blur & Sharpen

BCC Obsolete

BCC Color & Tone

BCC Lights

BCC Transitions

BCC Obsolete

BCC Lights

BCC Transitions

BCC Key & Blend

BCC Obsolete

BCC Lights

BCC Key & Blend

BCC Key & Blend

BCC Transitions

BCC Time

BCC Image Restoration

BCC Key & Blend

BCC Film Style

BCC Match Move

BCC Key & Blend

BCC Key & Blend

BCC Art Looks

BCC Stylize

BCC Textures

BCC Warp

BCC Stylize

BCC Blur & Sharpen

BCC Image Restoration

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

BCC Stylize

BCC Transitions

BCC Transitions

BCC Color & Tone

BCC Obsolete

BCC Textures

BCC Image Restoration

BCC Time

BCC Image Restoration

BCC Particles

Uncategorized

Uncategorized

Uncategorized

Uncategorized

BCC Perspective

BCC Perspective

BCC Particles

BCC Particles

BCC Particles

BCC Transitions

BCC Particles

BCC Art Looks

BCC Particles

Nested Subgroup

Nested Subgroup

BCC Image Restoration

Nested Subgroup

BCC Warp

BCC Art Looks

BCC Time

BCC Key & Blend

BCC Key & Blend

BCC Stylize

BCC Transitions

BCC Blur & Sharpen

BCC Blur & Sharpen

BCC Transitions

BCC Particles

BCC Lights

BCC Transitions

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Transitions

BCC Stylize

BCC Image Restoration

BCC Image Restoration

BCC Textures

BCC Lights

BCC Key & Blend

BCC Transitions

BCC Transitions

BCC Stylize

BCC Stylize

BCC Transitions

BCC Transitions

BCC Warp

BCC Transitions

BCC Textures

BCC Obsolete

BCC Color & Tone

BCC Stylize

BCC Stylize

BCC Obsolete

BCC Image Restoration

BCC Particles

BCC Particles

BCC Perspective

BCC Transitions

BCC Key & Blend

BCC Transitions

BCC Blur & Sharpen

BCC Lights

BCC Art Looks

BCC Lights

BCC Obsolete

BCC Textures

BCC Textures

BCC Obsolete

BCC Transitions

BCC Time

BCC Transitions

BCC Art Looks

BCC Transitions

BCC Time

BCC 3D Objects

BCC Time

BCC Time

BCC Color & Tone

BCC Transitions

BCC Warp

BCC Warp

BCC Transitions

BCC Film Style

BCC Key & Blend

BCC 3D Objects

BCC Blur & Sharpen

BCC Image Restoration

Uncategorized

BCC Transitions

BCC Warp

BCC Textures

BCC Time

BCC Stylize

BCC Warp

BCC Color & Tone

BCC Film Style

BCC Transitions

BCC VR

BCC VR

BCC VR

BCC VR

BCC VR

BCC Warp

BCC Art Looks

BCC Transitions

BCC Warp

BCC Textures

BCC Particles

BCC Image Restoration

BCC Match Move

BCC Textures

BCC Textures

BCC Obsolete

BCC Obsolete

BCC Obsolete

BCC Blur & Sharpen

BCC Lights

BCC Color & Tone

BCC Film Style

BCC Art Looks

BCC Lens

BCC Optical Diffusion

BCC Lights

BCC Lens

BCC Grads and Tints

BCC Art Looks

BCC Key & Blend

BCC Art Looks

BCC Grads and Tints

BCC Grads and Tints

BCC Film Style

BCC Film Style

BCC Image Restoration

BCC Image Restoration

BCC Color & Tone

BCC Lens

BCC Optical Diffusion

BCC Blur & Sharpen

BCC Color & Tone

BCC Optical Diffusion

BCC Optical Diffusion

BCC Grads and Tints

BCC Key & Blend

BCC Color & Tone

BCC Lights

BCC Film Style

BCC Optical Diffusion

BCC Optical Diffusion

BCC Grads and Tints

BCC Lights

BCC Lights

BCC Lights

BCC Color & Tone

BCC Optical Diffusion

BCC Art Looks

BCC Color & Tone

BCC Key & Blend

BCC Lights

BCC Art Looks

BCC Color & Tone

BCC Lights

BCC Lens

BCC Lights

BCC Lights

BCC Film Style

BCC Color & Tone

BCC Key & Blend

BCC Optical Diffusion

BCC Grads and Tints

BCC Optical Diffusion

BCC Art Looks

BCC Key & Blend

BCC Key & Blend

BCC Lights

BCC Grads and Tints

BCC Color & Tone

BCC Optical Diffusion

BCC Lens

BCC Grads and Tints

BCC Lights

BCC Lights

BCC Lights

BCC Color & Tone

BCC Grads and Tints

BCC Color & Tone

BCC Optical Diffusion

BCC Grads and Tints

BCC Optical Diffusion

BCC Grads and Tints

BCC Lights

BCC Grads and Tints

BCC Textures

BCC Film Style

BCC Grads and Tints

BCC Perspective

BCC Lens

BCC Art Looks

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

BCC 3D Objects

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Tutorial

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Tutorial

Effect:
BCC 2D Particles
BCC 3 Way Color Grade
BCC 3D Extruded Image Shatter
BCC 3D Image Shatter
BCC AE Licensing
BCC Alpha Pixel Noise
BCC Alpha Process
BCC Alpha Spotlight
BCC Apply Modes
BCC Artists Poster
BCC AVX Licensing
BCC Beat Reactor
BCC Beat Reactor Integrated
BCC Beauty Studio
BCC Blobs Wipe
BCC Blur
BCC Blur Dissolve
BCC Boost Blend
BCC Brick
BCC Brightness-Contrast
BCC Broadcast Safe
BCC Bulge
BCC Bump Map
BCC Burnt Film
BCC Cartoon Look
BCC Cartooner
BCC Cast Shadow
BCC Caustics
BCC Charcoal Sketch
BCC Checker Wipe
BCC Chroma Key
BCC Chroma Key Studio
BCC Cloth
BCC Clouds
BCC Color Balance
BCC Color Choker
BCC Color Correction
BCC Color Match
BCC Color Palette
BCC Colorize
BCC Colorize Glow
BCC Colorize Glow Dissolve
BCC Comet
BCC Common Controls
BCC Common Controls - Avid
BCC Compare Mode
BCC Composite
BCC Composite Choker
BCC Composite Dissolve
BCC Corner Pin
BCC Corner Pin Studio
BCC Correct Selected Color
BCC Crash Zoom Dissolve
BCC Criss-Cross Wipe
BCC Cross Glitch
BCC Cross Melt
BCC Cross Zoom
BCC Cube
BCC Curl
BCC Curl Dissolve
BCC Cylinder
BCC Damaged TV
BCC Damaged TV Dissolve
BCC DeGrain
BCC Deinterlace
BCC DeNoise
BCC Directional Blur
BCC Displacement Map
BCC Drop Shadow
BCC Dropout Fixer
BCC Dust and Scratches
BCC Dv Fixer
BCC DVE
BCC DVE Basic
BCC Edge Cleaner
BCC Edge Grunge
BCC Edge Lighting
BCC Effects List
BCC Emboss
BCC Extruded EPS
BCC Extruded Spline
BCC Extruded Text
BCC FAQ
BCC Fast Film Glow
BCC Fast Film Glow Dissolve
BCC Fast Film Process
BCC Fast Flipper
BCC Fast Lens Blur
BCC Film Damage
BCC Film Glow
BCC Film Glow Dissolve
BCC Film Grain
BCC Film Process
BCC Fire
BCC Flicker Fixer
BCC Flutter Cut
BCC Fractal Noise
BCC FX Browser
BCC Gaussian Blur
BCC Glare
BCC Glint
BCC Glitter
BCC Glow Alpha Edges
BCC Glow Matte
BCC Gradient
BCC Granite
BCC Grid Wipe
BCC Grunge
BCC Halftone
BCC Hue-Sat-Lightness
BCC Invert Solarize
BCC Jitter
BCC Jitter Basic
BCC Kaleida Dissolve
BCC Laser Beam
BCC Layer Deformer
BCC LED
BCC Lens Blur
BCC Lens Blur Dissolve
BCC Lens Correction
BCC Lens Distortion Wipe
BCC Lens Flare 3D
BCC Lens Flare Advanced
BCC Lens Flare Dissolve
BCC Lens Flare Round
BCC Lens Flare Spiked
BCC Lens Flash
BCC Lens Shape
BCC Lens Transition
BCC Levels Gamma
BCC Light Leaks
BCC Light Leaks Dissolve
BCC Light Matte
BCC Light Sweep
BCC Light Wipe
BCC Light Wrap
BCC Light Zoom
BCC Lightning
BCC Linear Color Key
BCC Linear Luma Key
BCC Linear Wipe
BCC Looper
BCC Magic Sharp
BCC Make Alpha Key
BCC Match Grain
BCC Match Move
BCC Matte Choker
BCC Matte Cleanup
BCC Median
BCC Misalignment
BCC Mixed Colors
BCC Morph
BCC Mosaic
BCC Motion Blur
BCC Motion Key
BCC Motion Tracker
BCC Motion Tracker AE
BCC Motion Tracker Avid
BCC Motion Tracker FCP
BCC Motion Tracker Motion
BCC Motion Tracker PRM
BCC Motion Tracker Red
BCC Motion Tracker Resolve
BCC Motion Tracker Vegas
BCC Multi Shadow
BCC Multi Stretch Wipe
BCC Multi Stripe Wipe
BCC MultiTone Mix
BCC Noise Map
BCC Noise Map 2
BCC Noise Reduction
BCC Optical Flow
BCC Optical Stabilizer
BCC Organic Strands
BCC Overview in Adobe
BCC Overview in Avid
BCC Overview in FCP
BCC Overview in Resolve
BCC Page Turn
BCC Pan And Zoom
BCC Particle Array 3D
BCC Particle Emitter 3D
BCC Particle Illusion
BCC Particle Illusion Dissolve
BCC Particle System
BCC Pencil Sketch
BCC Pin Art 3D
BCC Pinning Controls
BCC Pixel Chooser
BCC Pixel Fixer
BCC PixelChooser – Legacy
BCC Polar Displacement
BCC Posterize
BCC Posterize Time
BCC Preferences
BCC Premult
BCC Presets
BCC Primatte Studio
BCC Prism
BCC Prism Dissolve
BCC Pyramid Blur
BCC Radial Blur
BCC Radial Wipe
BCC Rain
BCC Rays Cartoon
BCC Rays Dissolve
BCC Rays Puffy
BCC Rays Radiant Edges
BCC Rays Radiant Spotlight
BCC Rays Ring
BCC Rays Ripply
BCC Rays Streaky
BCC Rays Textured
BCC Rays Wedge
BCC Rectangular Wipe
BCC Reflection
BCC Reframer
BCC Remover
BCC Reptilian
BCC Reverse Spotlight
BCC RGB Blend
BCC RGB Blur Dissolve
BCC RGB Displacement Dissolve
BCC RGB Edges
BCC RGB Pixel Noise
BCC Ribbon Wipe
BCC Rings Wipe
BCC Ripple
BCC Ripple Dissolve
BCC Rock
BCC Rough Glow
BCC Safe Colors
BCC Scanline
BCC Scatterize
BCC Sequencer
BCC Smooth Tone
BCC Snow
BCC Sparks
BCC Sphere
BCC Sphere Transition
BCC Spill Remover
BCC Spin Blur Dissolve
BCC Spiral Blur
BCC Spotlight
BCC Spray Paint Noise
BCC Stage Light
BCC Star Matte
BCC Stars
BCC Steel Plate
BCC Super Blend
BCC Swish Pan
BCC Temporal Blur
BCC Textured Wipe
BCC Tile Mosaic
BCC Tile Wipe
BCC Time Displacement
BCC Title Studio
BCC Trails
BCC Trails Basic
BCC Tritone
BCC Tritone Dissolve
BCC Turbulence
BCC Twirl
BCC Twister
BCC Two Strip Color
BCC Two Way Key
BCC Type On Text
BCC Unsharp Mask
BCC UpRez
BCC User Guide
BCC Vector Blur Dissolve
BCC Vector Displacement
BCC Veined Marble
BCC Velocity Remap
BCC Video Glitch
BCC Video Morph
BCC VideoScope
BCC Vignette
BCC Vignette Wipe
BCC VR Blur
BCC VR Flicker Fixer
BCC VR Insert
BCC VR Reorient
BCC VR Sharpen
BCC Warp
BCC Water Color
BCC Water Waves Dissolve
BCC Wave
BCC Weave
BCC Wild Cards
BCC Wire Remover
BCC WitnessProtection
BCC Wood Grain
BCC Wooden Planks
BCC Z Space I
BCC Z Space II
BCC Z Space III
BCC Z-Blur
BCC+Ambient Light
BCC+Black and White
BCC+Bleach Bypass
BCC+Borders
BCC+Camera Shake
BCC+Center Spot
BCC+Chroma Bands
BCC+Chromatic Aberration
BCC+Color Gradient
BCC+Color Infrared
BCC+Color Paste
BCC+Color Shadow
BCC+Color Spot
BCC+Colorize Gradient
BCC+Cross Processing
BCC+Day for Night
BCC+DeBand
BCC+DeBlock
BCC+Defog
BCC+DeFringe
BCC+Depth of Field
BCC+Detail
BCC+Develop
BCC+Diffusion
BCC+Double Fog
BCC+Dual Gradient
BCC+Edge Composite
BCC+Enhancing
BCC+Eye Light
BCC+Film Stocks
BCC+Fog
BCC+Frost
BCC+FX-Editor
BCC+Gels
BCC+Glow
BCC+Glow Darks
BCC+Glow Edges
BCC+Grade
BCC+Halo
BCC+Harris Shutter
BCC+High Contrast
BCC+Holdout Composite
BCC+Ice Halos
BCC+Infrared
BCC+Kelvin
BCC+Key Light
BCC+Lens Distortion
BCC+Lens Flare
BCC+Light
BCC+Looks
BCC+Low Contrast
BCC+Math Composite
BCC+Mist
BCC+ND Gradient
BCC+Net
BCC+Night Vision
BCC+Non-Additive Mix
BCC+Optical Dissolve
BCC+Overexpose
BCC+Photographic
BCC+Polarizer
BCC+Rack Focus
BCC+Radial Exposure
BCC+Radial Tint
BCC+Rays
BCC+Reflector
BCC+ReLight
BCC+Selective Saturation
BCC+Sepia
BCC+Shadows/Highlights
BCC+Silk
BCC+Skin Tone
BCC+Split Field
BCC+Split Tone
BCC+Streaks
BCC+Sunset
BCC+Textures
BCC+Three Strip
BCC+Tint
BCC+Transform
BCC+Wide Angle Lens
BCC+X-Ray
Removed Gradient Parameters
Title Studio - The Title Container Parameter Guide
Title Studio Basics
Title Studio- Animating an Object Using Keyframes
Title Studio- Creating a Credit Roll
Title Studio- Creating a Credit Roll Part Two
Title Studio- Creating A Fade Effect
Title Studio- Creating a Type on Effect with Title Containers
Title Studio- Creating an Animated Lower Third
Title Studio- Image Processors
Title Studio- Image Processors - Blur Shaders
Title Studio- Image Processors - Glow Shaders
Title Studio- Image Processors - Gradient Shaders
Title Studio- Image Processors - Key Shaders
Title Studio- Image Processors - Light Rays
Title Studio- Image Processors - Light Sweep
Title Studio- Image Processors - Scan Lines
Title Studio- Image Processors - Spotlight
Title Studio- Image Processors - Wipe Shaders
Title Studio- Image Processors- Linear Ripple
Title Studio- Keyframe Palette
Title Studio- Scene Container Parameter Guide
Title Studio- The Animation Tab
Title Studio- The Camera Tab
Title Studio- The Composite Tab
Title Studio- The Container Position Tab
Title Studio- The History Palette
Title Studio- The Info Window
Title Studio- The Lights Tab
Title Studio- The Preferences Panel
Title Studio- The Project Settings Window
Title Studio- The Render Tab
Title Studio- The Text Tool
Title Studio- The Tools Window
Title Studio- The User Marks Window
Title Studio- Understanding Track Structure
Title Studio- Working With Deformers
Title Studio- Working With Image Processor Shaders
Title Studio- Working With Spline Media
Title Studio- Working with the Composite Window
Title Studio- Working with the Controls Window
Title Studio- Working with the Timeline Window
Working in Vegas Pro

PRODUCT UPDATES & SPECIAL OFFERS

Join our email newsletter and keep up to date